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Scale invariance in coarsening of binary and ternary fluids
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Phase separation in binary and ternary fluids is studied using a two-dimensional lattice gas automata. The
lengths given by the the first zero crossing point of the correlation function and the total interface length is
shown to exhibit power law dependence on time. In binary mixtures, our data clearly indicate the existence of
a regime having more than one length scale, where the coarsening process proceeds through the rupture and
reassociation of domains. In ternary fluids; in the case of symmetric mixtures there exists a regime with a
single length scale having dynamic exponent 1/2, while in asymmetric mixtures our data establish the break
down of scale invariance.
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I. INTRODUCTION metric binary mixtures, thermal fluctuations can drive the
initial = 1/3 regime to aw=1/2 regime[11]. Most of the
A mixture of fluids phase separate into domains wherstudies, however, show a crossover from the 1/3 to an
quenched below its critical temperature. Since many systemaertial «=2/3 regime predicted by FurukayaQ].
of scientific and technological interest are multicomponent More recently many researchers have pointed out the ab-
mixtures, the phase behavior of fluid mixtures are of currengsence of scaling in two-dimensional phase separating fluids.
interest. The equilibrium state of incompatible fluids is onelt is shown that competition between diffusive and hydrody-
in which the pure phases are separated by a single connectagdmic growth leads to breakdown of scale invariance in sym-
interface. However, in the thermodynamic limit, starting metric binary fluids[12]. In the viscous hydrodynamic re-
from a mixed phase this equilibrium is never reached. Ingime, scaling is observed only in the case of coarsening
view of this, the kinetics of the phase separation procesghrough coalescence. Even after starting from a droplet state
gains importance. one can enter a bicontinuous state by coalescence induced
In the case of phase separating binary fluids, experimentsoalescence mechanigi3] leading to a breakdown of scal-
[1-4] and numerical simulationg5—7] have clearly estab- ing. Alternatively, starting from a droplet state scaling is
lished the importance of hydrodynamics in the determinatiommaintained, in symmetric binary mixtures, if the droplet mor-
of late time domain growth laws. In spite of all efforts, a phology is self-sustainingl4]. In the inertial hydrodynamics
complete theoretical understanding of this highly nonlinearregime, full scaling is recoverdd4,15. Excellent scaling is
phenomena remains unsolvggl. This is mainly due to the observed also in the crossover regime from the viscous hy-
fact that studying kinetics of liquid phase separation involvesirodynamic to the inertial hydrodynamic regiftg].
the solution of mutually coupled equations; the Navier- Variety of techniques have been used to simulate growth
Stokes equation for the flow and the equation of continuitykinetics in the binary immiscible fluids. Direct simulations of
for the order parameter. model H have been used to study the domain growth and
Early experimental and theoretical studies of these binargcaling using various defined length scal8sl5]. Lattice
fluid systems, assume that there exists, at late times, a dBoltzmann simulations have been particularly useful in ex-
namical scaling regime exhibiting similar behavior under anploring the late time hydrodynamic reginj@7—19. One
appropriate rescaling of time and length scales. Dynamicgbroblem with this technique is that it does not include ther-
scaling is characterized by the single time-dependent lengthhal fluctuations. On the other hand thermal fluctuations are
scaleR(t). The domain growth follows a simple and generic inherent in lattice-gas models. Rothman and Keller proposed
algebraic form,R(t)=t*, wherea represents the exponent a lattice-gas mode{RK mode) for the binary immiscible
characteristic of the universality class to which the systenfluids [20]. This model has been used for simulating 2D bi-
belongs. Scaling and dimensional analysis by Sig@laFu-  nary fluid phase separation at different overall fluid densities
rukawa[10], San Migue[11], and more recently by Brady]  [21,22.
addresses this question of the growth exponent taking this Though most of the techniques mentioned in the previous
length scaleR(t) to be the average size of the ordering do-paragraph have been extended to study a mixture of two
mains. In two dimensions, in the case of minoyphase fluids and a surfacta22-24, our understanding of phase
separating from &A rich mixture, the domains coarsen via separation wherein all three are fluid components is rather
evaporation-condensation process leading to the exponetfitited. Molecular dynamics simulations by Laradit al.
a=1/3. The late time growth is governed by droplet coales{25] seem to indicate that hydrodynamic flow is not likely to
cence leading to the exponeat=1/2. In the case of sym- control the separation process in ternary fluid system. This
study indicates that the ternary system at late times reaches a
dynamical scaling regime during which the domains show a
*Email address: lakshmi@physics.iitm.ac.in growth lawR(t) «t¥3 in agreement with the classical theory
TEmail address: sunil@physics.iitm.ac.in of Lifshitz and Slyozov. Gunstensen and Rothman extended

1063-651X/2003/6(1)/0115079)/$20.00 67 011507-1 ©2003 The American Physical Society



K. C. LAKSHMI AND P. B. SUNIL KUMAR

the lattice-gas modelGR Mode) to study ternary immis-
cible fluids[26] but do not make any comments about the
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By choosing a substrate which has minimum interaction
with the fluid one should be able to conduct experiments on

dynamical exponents. In this model, the total energy functiorfluid separation problem in two dimensions. Such quasi-two-

is the sum of the work done by the “color fluxf; of each
component against its “color field@i and is given byw
=>0,f;-Q;. More recently, a level set method was pro-
posed for the study of phase separation in fluid mixture
[27]. In this method one assumes convective terms to dom
nate the coarsening; local volume fraction functigp(x,t)

dimensional geometries have been used for studying three-
fluid phase separatiom].

The paper is organized as follows: In Sec. |, we introduce
the problem and summarize previous results. A detailed ac-

Tount of the lattice-gas automaton model and the algorithm
for computing the cluster size and interface length are given

in Sec. Il. Next, we discuss the results of our simulations on

of the components is then coupled to the local velocity fieldthe binary fluids. Section IV deals with the symmetric and

v through the kinetic equation
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The fluid veIocityJ satisfies Navier-Stokes equation
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where,P is the pressurey is the kinematic viscosity, ang
is the density. The interfacial energy between the domain

enters the equations only through the external fétce

F= X o/ 8(¢)r(en, 3
i=A,B,C

wherex(¢,) is the curvature of thé); domain interfaceg is
the surface tension defined such that for A interface the
surface tension iy + o .

The zero contour of the functiog; specifies the interface
of the domains. Immiscible three-component mixtures with
majority component# andB having the same volume frac-
tion and a minorityC phase was studied using this method

asymmetric ternary fluids. In Sec. V, we conclude the paper
with a summary of the results.

Il. THE MODEL

Lattice-gas automaton is an alternative numerical descrip-
tion of fluid flow dynamics. This model approximates reality
by constraining motions and collisions of fluid particles to a
lattice, where each particle represents a finite mass of fluid.
Lattice-gas automaton models represent, in the continuum,
the incompressible Navier-Stokes equation correctly and are
extensively used in simulations of fluids.

In this paper, we discuss simulations using the Frisch,
Hasslacher, and Pome&eHP) model for fluids. Much has
been written about the FHP model, which was first intro-
duced in 1986 by Frisch, Hasslacher, and Ponj@&li The
fully discrete microscopic dynamics of the FHP model maps
into the macroscopic behavior of hydrodynamics. A modified
version of the FHP model for immiscible fluid was intro-
duced by Rothman and Kell¢20]. In this model, which is
defined on a hexagonal lattice, particles at the lattice sites

are allowed to take seven possible velocitieé,, i
{0,1,2,3,4,5,6. Boolean variables indicate the occupation

[27]. They find a power law dependence of interface |engtH1umber at a particular site at a given time. The dynamics is

with dynamic exponents in the range 0.5-0.6.

such that no more than one particle enters the same site at the

In this paper, we discuss lattice-gas simulations of thes@me time with the same velocity; the exclusion principle.

binary and ternary mixtures phase separating in two dimenIhe particles undergo c_oIIision that conserves, at every site,
sions. We calculate cluster size distribution, total interfacéh® total number of particles, their total momentum, and the

length, and the density density correlation functions for eacfotal kinetic energy after each time step.

of the components. We see that, in some cases, the interfac

e Multiphase flows in which different species of fluids co-

length and the first zero of the correlation function; though€XiSt, move and interact are an important domain of applica-
shows power law dependence on time, do not have the santi@n of the lattice-gas approach. Models for miscible, immis-

dynamic exponents, thus, violating scaling.
In binary mixtures, large difference in the parameters

cible, and reactive flows have been proposed. Interaction
between the species are the key ingredient of multiphase

of the two components can lead to breakdown of scalind'o""s and depending on the nature of the physical processes,

with the domains coarsening through rupture and coaled

cence. In the symmetric ternary mixtures with eqaaland

ifferent interactions will be considered.
The lattice-gas approach has the important advantage that

equal volume fractions, we see the average size of the ordeﬁhe interface between the different fluids appear, naturally, as

ing domains,R(t)«tY® in agreement with the results re-

ported earlier. At late times, we observe a crossoverttt?a
regime which is not reported in previous simulations. As we'

a consequence of the way the fluids are modeled in terms of
particles. In this paper, we represent the different phases by
assigning the particles a “color.” Now the state of any vertex

reduce the volume fraction of one of the components thigtr is specified by a total density vectgi(r) and the color
exponent changes to 2/3, consistent with the inertial regimeectorsg;(r) with Boolean variableg; andg;; as the com-
in two-component mixtures. In the asymmetric case; whereiponents of this vector. In the case of ternary mixturesan

one of the component is miscible in the other two, we ob-t

serve aR(t)t¥? and a crossover t° as the volume frac-
tion of the solute is reduced to zero.

ake three values-1, —1, and 0. This is illustrated clearly
in Fig. 1. We define the average density as the ratio of total
number of particles to the maximum number of particles
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FIG. 1. Thestateof a lattice point is given by the vectors
={1,0,1,0,0,1,9, 9,={0,0,1,0,0,0,p, q_,={1,0,0,0,0,0,, and
40={0,0,0,0,0,1,9.

possible. This is given bgi=S{Z51=Y¢;(r;)/(7N), whereN
is the total number of sites in the lattice.
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FIG. 2. Possible configurations in a two-particle collision.

Drawing analogies from electrodynamics, we define ayinciple as well as the principles of mass, momentum, and
color flux and color field at every lattice point for each type particle conservation. There can be a number of configura-
of particles. In the case of ternary mixture the color flux at a5 which satisfy the above constraints, and in principle

lattice site is given by

i=5
Ql(F):;O CiG; . (4)
j=5
Q_1(N=2 ¢;q_4;, 5)
=0
j=5
Qo(r) =2, €T - (6)

j=5 k=6
fi(r)=2, ¢; 2, gu(r+gj), (7)
=0 k=0
j=5 k=6
foi(r)=2, ¢ 2 g wu(r+cy), (8)
]=0 "k=0
j=5 k=6
fo(r)=2, ¢; Jok(r +c¢j). 9)
]=0 "k=0

one should pickup that configuration which minimizes en-
ergy from this full set of possible configurations. In practice
only a “limited” number of configurations are considered. In
our simulations, we take into account the following possibili-
ties.

If a site has more than three particles or if their total
momentum is nonzero, then we pickup all possible pairs and
an attempt is made to exchange their colors. The exchange is
accepted only if it lowers the energy.

When two particles occupy the same site with opposite
velocities there are two cases to consider. In one, both the
particles are of the same color. Then a rotation of the con-
figuration by 0°, 60°, or 120° is attempted as shown in Fig.
2. The other possibility is that the two are of different colors.
Then, we need to check the possibilities for G°60°,
+120°, and 180° rotation.

When three particles collide at an angle of 120°, there are
three possibilities. When all the particles have the same
color, they could just reverse their directions or retain their
velocities. When the colors are not the same, similar to two-
particle collisions, the configuration could now be rotated by
0, £60, =120, and 180. In all the above cases, the lowest
energy configuration is chosen as the final state.

There is one special case of three-particle collision in

Following the GR model, we write the work done by the which two particles have opposite velocities and the third

flux against the field to be
W= —[01f1(r)-Qu(r) +o_1f_1(r)-Q_4(r)
+aofo(r)-Qo(N)], (10)

one is a zero velocity particle. In this case, apart from rotat-
ing the configuration an exchange of color between pairs is
also attempted.

Next step in the simulation is the translation in which all
particles are moved in the direction of their velocities. This

where o; are the parameters which determine the surfac&®llision and translation process completes one time step.
tension between different phase boundaries. The three phases 0 understand the various competing terms in this model,

are labeled by=+1,0.

we first look at a two-component fluid mixture and introduce

The simulation proceeds in two steps, collision and transthe variablesy, =g —0g-1x, éx=0di+ -1k, in the direc-
lation. During the collision process, particles at a given lat-tion k. The two components are now designated dyy
tice site can exchange their velocity and color. The collision=*1. Substituting these variables in the equations for
rules are such that the work performed by the flux against thé,,f_, andQ;,Q_,, we can obtain from Eq(10) the work
field is minimized, subject to the constraints of the exclusiondone to be
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W= —(01f1-Qi1+0o_1f 1-Q 4

:—[Ek Cilli- (0'1+0'—1)2i E.EI ai

r+c;

+<al—o_1>2 6i2| BI(r+¢)

_((71_0—1)2i Eizl q(r+c||. (11

Momentum conservation implies that the last two terms in
the above equation do not contribute to the dynamics. The
first term decides the energy of the interface between the two
phases. The second term favors movement of particles to- FIG. 3. (Top) Rules for determining the border. Squares repre-
ward higher or lower densities depending on their color. FosentC phase, open circles repres@&phase, and the hashed circles
example, whenr;—o_;>0 this terms imply higher diffu- represeniA phase. The dark squares and circles are the border sites
sivity of particles withq=—1. Thus, increasind;gl— 0'_1| between thé\-C phase and thB-C phase(Bottom) Snapshot from
is like increasing the “temperature.” the simulation of ternary fluid with one component miscible in the

The earlier lattice-gas model for two-component fluids byother two. The dark regions are the border betweerht@ (white)
Rothman and Keller used;=o_;=¢. In this model the andB-C (gray domains.
work done is given by

All lattice sites are picked sequentially. If a particular site
W=—of-3 (12) belongs to the phask and is not assigned a cluster number
’ we give it a new number. All the neighbors of this site are
N R 2 25> ke - then checked. If the neighbor belongs to the phasthree
=S173c g, —=3i=53 7k=6 ) I, . - .
mzegr?(t&; E|rj1 ;%%SJC ea?hderfrgezl fIi(]: ?Sgii?);:%c)]/k(dr;iﬁjizlé anp035|b|I|t|es arise. In one, the site does not have an assigned

. lik h that th cluster number. We will then give this neighbor the same
Inverse temperature like paramefgisuch that the new con- . ster number as the present site. In the second case, the

figuration at every time step is accepted with a probability,eighihor has a number which is the same as the site . Here,
proportional to exp B(Woig—Whew) [22]. Unless specified, e 4o not have to do anything more. In the third case, the

otherwise, the results discussed in this paper are Obtain%ighbor has a number which is different from that of the

using the GR model. present site. That is, the neighbor belongs to a different clus-
ter. In that case, the clusters are merged by assigning smaller
Correlation functions and domain distribution functions of the two numbers to all sites in the two clusters. A lattice
We define the pair correlation functions site which belong to a particular phase is a border site if one
of its neighbors is of a different phase.
- - .- In the case, wherein one of the phases is equally miscible
Cl(r,t= < Ek Qi,k(th); Qj,k(X+f't)> in the other two; for example, let us consid@miscible inA
and B, we have two phases, th&-C phase and thé&-C
- - phase, see Fig. 3. To label the domains, we then follow the
- < Ek qhk(x)> < ; qJ',k(X)> ' (13 same procedure as before. Any site belongs tAtie phase
if it is an A site or aC site whose neighbors are &@lor C.
- - - - - . For example, regiom in Fig. 3 belongs to thé\-C phase.
Cij (r, ) =(hi(x,Hhj(x+1,1)) =(hi(x))(hj(x)), (14  The border of theA-C domain could be & or C site. If it is
anA site, it should have at least oleneighbor(regiond in
Here, the subscripisj represent the color of the particles Fig. 3) or a C neighbor with the next nearest neighborBas
with i,j==1,0. Field values); determines thehaseat ev-  (regionain Fig. 3. If the border site belongs to th@phase
ery lattice points. A lattice point belongs to thé phase ih;  then it should either have a neighbor which iB site (region
has a value higher than the other two. This means that mostin Fig. 3) or aC neighbor with the next nearest neighbor as
of the particles there belong to thén color. We calculate the B (regiona in Fig. 3).
lengthR;;(t) as the first zero of the correlation functiﬁ)ﬂ . In the simulations, to prepare the initial configuration a
For the immiscible case wherein all three phases have thearticle is placed at a randomly chosen site. The velocity of
same surface tension, to calculate the border length and clutie particle is chosen randomly from the seven possible di-
ter size of the domains of a particular phase, 8aye use rections such that the total momentum summed over all par-
the following algorithm. ticles is zero. The color of the particle is again assigned
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.log L(t) .

FIG. 6. Time evolution of binary mixture fod=0.55, o,
=1.0, 0_,=—0.4. The snapshots are taken(at t=25118 and
(b) t=39 810.

FIG. 4. The first zero of the correlation functi®(open circley

and the total border length (filled squaresfor a binary fluid, with . . . . . . .
o1=0_1=1, with logy, (time). The average density of the fluids is which predict scaling to hold in the inertial regirig4,15.

d=0.55. The curves are shifted to make the comparison easy. Con-_ V& NOW investigate the more general caseogf o,

tinuous lines with slope 2/3 and 1/3 are given as a guide to the eydVith o_1<o . The dynamic exponentsg and «, charac-
terizing the time dependence Bfand £ seem to vary dif-

ferently with o, —o_4. This is depicted in Fig. 5. This re-
randomly depending on the volume fraction of each composults imply break down of scaling at lower values «f ;.
nent. Once the initial configuration is prepared the ensuind e absence of scaling is clearly manifested in the snapshots
dynamics conserved the total number of particles, the neiven in Fig. 6, the coarsening process is through the break-

momentum, the total kinetic energy, and the volume fractioring and joining of domains. Since the lend¥t) is decided
of each components. by the big clusters it has a dynamical exponent characteristic

Simulations are performed on a triangular lattice withOf coalescence. On the other hand, the total border length
360000 lattice points with periodic boundary conditions.£(t) has significant contribution from the small clusters
The results are averaged over ten initial configurations. Th#hich coarsen through evaporation condensation.

dynamic exponents are obtained by a power law fit over one Similar change in the dynamical exponentsFoivas ob-
decade in time. served as a function of the inverse temperature like param-

eter 8 in the RK model[22]. For low B values the coarsen-
ing mechanism is very similar to that operating in the case of
o1# 0 _1 in the GR model. This is shown in Fig. 7. The

In this section, we reexamine the well studied case oflependence afr andL shown in Fig. 8 confirms absence of
binary fluid coarsening following a critical quench. The flu- scaling. These exponents indicate the presence of more that
ids are labeled by=+1. Let us first look at the case; one coarsening mechanism operating at the late time regime.
:0-71:1_ The time dependence of average domain size In the case of two-fluid mixtures with Unequal volume
R(t) which scales the same way Bg is shown in Fig. 4. At fraction, we see the initial LSW regime crossing over to the
early time, we see Lifshitz-Slyozov-WagnérSW) t1 [8] a=1/2 regime controlled by the droplet coalescence mecha-
growth_ At late times the growth of domains is controlled by nism. The first zero of the correlation functi®and the total
the inertial hydrodynamics and we have the well kna#f ~ border lengthC in this regime seems to indicate existence of
growth law[8]. simple scalind 18].

To check for scaling, we compare the lendrtgiven by
the first zero of the correlation function with the total border
length £(t). As can be seen from Fig. 4, at late time, in the
inertial hydrodynamic regime, the length also exhibits In this section, we look at two separate cases of phase
power law dependence with a dynamic exponent 2/3. Thiseparating three-component fluids. In one, we consider a
agrees with earlier studies on binary fluid phase separatiosymmetric ternary mixturevith all the components having

equal volume fraction and with the parameteysn Eq. (10)

IIl. TWO-COMPONENT FLUIDS

IV. THREE-COMPONENT FLUIDS

o6sh EsEmE = 8§ set too;=o0_1= 0. This amounts to having the same sur-
657 o
[ 0©0° ©
Or - O o
0.401
2 e
0 5—0.4 0 0.4
c-1
FIG. 5. Dynamic exponents afg and«, as a function ofr_, FIG. 7. Time evolution of binary mixture in the RK model for
for o;=1. The open circles represent. and the dark squares d=0.55, ¢=1.0, 8=0.03. The snapshots are taken @ t
representg. =25118 andb) t=39 810.
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0T ETTE 8 16[ e 040 o3
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0.55F o 1 L O 0.55 ®. O
o, [©° 1 9 . O
0 40 :. ) m | . s O 6 i
4o o0 "0 /o
o | e "0 /&% |
0.25 -O 1 — ° ® s« O
L) S "0
0 0.2 0.4 0.8 i mO 1
. , 3.5 4.5
FIG. 8. Dynamic exponents @iz anda as a function of3 for log(t)

o=1 in the RK model. The open circles representand the dark

squares represent, . FIG. 10. Variation oft correlation length with log, (time) in the

. ) immiscible three-component case for densities 0.45, 0.5, and 0.55.
face tension for théa—B,B—C, andA—C interfaces. The 405 Jine is given as a guide to the eye.

other case of interest is thesymmetric mixturewhere we

choose the parameters to he;=c_; and 0o<2(o1  This implies thaR grows with time afR~ (vkgTt/ 7)Y [9].
+o_4). This choice of parameters ensures that one of the Another mechanism for droplet coalescence is interfacial
componentgsolute is equally soluble in the other two. We diffusion. At nonzero temperatures the domains fluctuate
will now discuss these two cases in detail. from their circular shape. The area explored by the domain in
. time t goes adD,t, whereD,, is the diffusion coefficient for
1. Symmetric case the interface. The coalescence titds then given by

Starting from the mixed state, the symmetric ternary mix- 5
ture, when quenched below the transition temperature, i N&
evolves to form droplets of individual components. Snap- ¢ Dy’
shots from the simulation, shown in Fig. 9, clearly establish

the existence of sharp interfaces between the componenigere, the lengttR, is such thatwRéz area of the droplet.
The first zero of correlation functiolR and the interface since the interface diffusion coefficient is not a function of
length £ are plotted in Fig. 10 as a function of time. R,, we getL(t)~t¥2 Thus, both the droplet diffusion and
Initial regime corresponds to the formation of droplets. Ininterfacial diffusion could give the same dynamical expo-
Fig. 10, we see a region witR(t) ~t*?, where this droplets pent.
coalesce to form bigger domains. If the late time growth is  Tg explore the possibility of the second mechanism, we
due to the coalescence by droplet diffusion, as it is believedtydied the stability of a drop to fluctuations from the circu-
to be, then the following simple argument shows that thgar shape. As shown in the appendix, in two dimensions,
exponent should be 1/2. surface fluctuations die out exponentially, both in the case of
If Ris the typical radius of a droplet, we have the dropleta drop and a strifj11] of one fluid in another. This implies
number denSityV"U/Rz, wherev is the volume fraction of that in the a=1/2 regime, the dominant mechanism for
the components in two dimensions. The time for a droplet tQ@oarsening is the droplet coalescence by diffusion.
diffuse a distance of order of its radiustjs= R°/D, whereD Droplet coalescence is the only mechanism operating here
is the diffusion coefficient. The area swept out by the drop inand is further confirmed by the existence of scaling. In Fig.

time t (for t>tg) is of the orderR’t/tx~Dt. If t. is the 11, we compare the time dependence of the total border
coalescence time, the expected number of drops in an area

Dt. is of the order unity, which meansDt.=1. Since in
two dimensions, the diffusion coefficier~kgT/ 75, does
not have any dependence on the droplet size,

(16)

|z
vD UkBT. %D

A o4 -
“"’l.‘ ‘ 1 B { 4 4 |
gLl g he f a4t g
IEREEO T et BB T L.
:é‘u" j’{'hmxfﬂ p:‘u:“, | A_".‘.‘ : .‘ FIG. 11. The first zero of the correlation functidR (open

circles and the total border length (filled squaresfor a symmet-
FIG. 9. Time evolution of three-fluid mixture fad=0.5, o4 ric ternary fluid witho ;= o_,= o with log;, (time). Average den-
=0_1=0p=1. The snapshots are taken @ t=10 000, (b) t sity of the fluids isd=0.55. Continuous lines with slopes 1/3 and
=39810, andc) t=100 000. 1/2 are given as a guide to the eye.
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Tog £(t)

FIG. 13. The first zero of the correlation functiGopen circles

FIG. 12. Time evolution of three-fluid mixture fat=0.55.(a) ~ and the total border lengtifilled squares in three-component
and (b) are the snapshots from the asymmetric ternary mixturedsymmetric fluids with log, (time). Continuous lines with slopes
phase separation &t 25 118 and =39 810 witho,=c_,=1 and  0-33 and 0.5 are given as reference.
oo=—1.5. Note the breaking and reorganization of the domains
with time. A-C region is shown in black anB-C region in white. ~ dimensional hydrodynamic lattice-gas model. Various dy-
For comparison, we show snapshdéts and (d) from the phase namic regimes are investigated by altering parameters like
separation of a binary mixture having the same density at the sameolume fraction, the interaction strength of the individual
time steps withoy,=0_,=1. components, and a temperature like variable.

) . i We examine the validity of scaling in two-component
length L of the domains of componeAtwith that of the first  fjig coarsening by comparing the dynamic nature of the first
zero of the correlation functioR(t). We observe the same zerg of the correlation function and the total border length.
time dependence for both the lengths indicating scaling inyhile scaling holds in the droplet coalescence and the iner-
the late time regime. tial hydrodynamic regimes, violation of scaling is observed
in the fluctuation dominated regime.

In symmetric ternary mixtures, we show the existence of a

In this section, we discuss a ternary mixture with one ofcoalescence dominated regime with a single length scale ex-
the components equally soluble in the other two. For this, wénibiting a dynamical exponent=1/2. In asymmetric ter-
chooseo;=0_; andoy<—(o1+0_;) such that the com- nary mixtures we use the concentration of the solute as a
ponentC(i=0) is the solute. The componemsandB are  control parameter. We demonstrate that at higher solute con-
mutually immiscible. We choosa andB to have the same centrations, the coarsening is driven by fluctuations and scal-
volume fraction. We now havA-C andB-C mixtures phase ing is violated.
separating similar to the binary fluid under critical quench.

As shown in Fig. 12, the starting mixed phase separates
into percolating domains oA-C and B-C phases. Though
the early time behavior is similar to the two-component fluid Stability of the drop

with oy =0, the late time growth is analogous to the situ- | this Appendix, we look at the stability of a drop with
ation, whereo, # o, discussed in Sec. lll. The snapshots rajysR against perturbations in its perimeter. We consider a
do not exhibit self-similarity, domains split up and combine drop of radiusR with the fluid in the regior <R character-
during coarsening. In this regime, the first zero of the corre;,qq by densityp, and kinematic viscosityy=7/p sur-
lation function exhibits a dynamic exponeni=1/2. We 4 nded by another fluid with densipy and kinematic vis-
would like to point out that for the same density, the tWo- ity 1,7 For an incompressible and vorticity free fluid, we

component fluid withry = o, exhibits a late time exponent ¢4, define the velocity component using a streaming poten-
a@=2/3 and does not show any evidencecof 1/2 regime. g W asv, = (1r) (9l dd), v 4= —dylar.

Thus, the third component acts to reduce the interfacial ten-
sion between thé rich andB rich phases leading to fluctua-

2. Asymmetric case

APPENDIX

Navier-Stokes equation then reduces to

tion induced breakup and reorganization of the domains. As (8,— vV2)V2y(r,$,t)=0. (A1)
the volume fraction of the compone@tis reduced, we ob-
serve a gradual change from the= 1/2 to a=2/3 regime. We look for solutions of the formy(r,¢,t) = (1, d,t)

In order to investigate the validity of the scaling hypoth- + y.,(r, #,t) such that
esis in this regime, we compare the length scdlé§ and
R(t). This is depicted in Fig. 13. It is evident from the figure V24, =0, (A2)
that these two length scales vary differently at late times.
— ,U2\v2 _
V. CONCLUSION (0= vV)Vehy(r,¢,1)=0. (A3)

We have presented the dynamics of domain growth in The general solutions of these equations in cylindrical po-
binary and ternary immiscible fluids, using a two- lar coordinates is
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byl Orlr=r- TP =0+ +P" +p,- (A6)
Ya(r, )=\ agr™+— | em%e, (A4)
' For the pressure, we write P=p(r)e'™%e“!. The pres-
(/,Z(r,d)'t):[amlm(kr)+IBme(kr)]eim¢ewt’ (A5) sure due to surface tension is obtained from the Young

Laplace formula
where k= (w/v)¥? and I,(kr) and K(kr) are modified

Bessel functions. oim?3
The coefficienta,,, b,,, @, andB,, are obtained from Pe=—Z—ti<r. (A7)
the four equations; the continuity of atr =R, continuity of Row

v, atr=R, continuity of tangential stress, , atr=R and

the relation between normal stresses

These equations can be written in a matrix form

R™ —1/R™ l'm —Kpm
_ k k a
RM-1 1/R™L “In/RF —lnoy —Kn/R+ —Kpg "
bm
=0, A8
5 s 2(m2+m) am (A8)
—2(m +m)Rm —_— A33 A34
Rm+2 Bm
L A41 A42 A43 A44 J
|
where 2m? 4m 1 om®
Ap=v| | ———+ =+ |
“ R R R’ Ry "
k2 2m m? mk
Ags=—| =+ —+ — | Iyt == k 2k
33 2 2 R2/ M 2R ML —ﬁ(l—Zm)lm—ﬁﬁ(m—l)'m—l,
+ mk+k| K2 2m?> 4m 1
ﬁ ﬁ m—-1— m—2s A=yl | - 0 &
k 2k
[k 2m m? mk — oR(1=2MKp g+ = (M=K | (A9)
A34— ?—l—?—F? Km+ﬁKm+1

In the limit of large viscosity, we can neglect all terms of

N m—k+ Mk ke order y(w/ 7). The condition for nontrivial solutions in this
2R ' R/ "m-1 m-2) limit leads to a relation betwees andm;
mio
0= (A10)
omd (1-4m°)Ry
Au=v| 2m?+k?R?— 1+ RM2, , . . . -
Ron Since the right hand side of this equation is always nega-

v(2m?+k’R?— 1)
42— R(M+2)

tive, we come to the conclusion that in the limit of high
viscosity there are no unstable modes. In the more general
case, the condition for nontrivial solutions leads to a tran-
scendental equation fap and m. A numerical analysis on
this equation does not yield any unstable solutions.
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