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Scale invariance in coarsening of binary and ternary fluids

K. C. Lakshmi* and P. B. Sunil Kumar†

Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India
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Phase separation in binary and ternary fluids is studied using a two-dimensional lattice gas automata. The
lengths given by the the first zero crossing point of the correlation function and the total interface length is
shown to exhibit power law dependence on time. In binary mixtures, our data clearly indicate the existence of
a regime having more than one length scale, where the coarsening process proceeds through the rupture and
reassociation of domains. In ternary fluids; in the case of symmetric mixtures there exists a regime with a
single length scale having dynamic exponent 1/2, while in asymmetric mixtures our data establish the break
down of scale invariance.
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I. INTRODUCTION

A mixture of fluids phase separate into domains wh
quenched below its critical temperature. Since many syst
of scientific and technological interest are multicompon
mixtures, the phase behavior of fluid mixtures are of curr
interest. The equilibrium state of incompatible fluids is o
in which the pure phases are separated by a single conne
interface. However, in the thermodynamic limit, startin
from a mixed phase this equilibrium is never reached.
view of this, the kinetics of the phase separation proc
gains importance.

In the case of phase separating binary fluids, experim
@1–4# and numerical simulations@5–7# have clearly estab
lished the importance of hydrodynamics in the determinat
of late time domain growth laws. In spite of all efforts,
complete theoretical understanding of this highly nonlin
phenomena remains unsolved@8#. This is mainly due to the
fact that studying kinetics of liquid phase separation involv
the solution of mutually coupled equations; the Navi
Stokes equation for the flow and the equation of continu
for the order parameter.

Early experimental and theoretical studies of these bin
fluid systems, assume that there exists, at late times, a
namical scaling regime exhibiting similar behavior under
appropriate rescaling of time and length scales. Dynam
scaling is characterized by the single time-dependent len
scaleR(t). The domain growth follows a simple and gene
algebraic form,R(t)}ta, wherea represents the exponen
characteristic of the universality class to which the syst
belongs. Scaling and dimensional analysis by Siggia@9#, Fu-
rukawa@10#, San Miguel@11#, and more recently by Bray@8#
addresses this question of the growth exponent taking
length scaleR(t) to be the average size of the ordering d
mains. In two dimensions, in the case of minorityB phase
separating from aA rich mixture, the domains coarsen v
evaporation-condensation process leading to the expo
a51/3. The late time growth is governed by droplet coal
cence leading to the exponenta51/2. In the case of sym
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metric binary mixtures, thermal fluctuations can drive t
initial a51/3 regime to aa51/2 regime@11#. Most of the
studies, however, show a crossover from thea51/3 to an
inertial a52/3 regime predicted by Furukawa@10#.

More recently many researchers have pointed out the
sence of scaling in two-dimensional phase separating flu
It is shown that competition between diffusive and hydrod
namic growth leads to breakdown of scale invariance in sy
metric binary fluids@12#. In the viscous hydrodynamic re
gime, scaling is observed only in the case of coarsen
through coalescence. Even after starting from a droplet s
one can enter a bicontinuous state by coalescence ind
coalescence mechanism@13# leading to a breakdown of sca
ing. Alternatively, starting from a droplet state scaling
maintained, in symmetric binary mixtures, if the droplet mo
phology is self-sustaining@14#. In the inertial hydrodynamics
regime, full scaling is recovered@14,15#. Excellent scaling is
observed also in the crossover regime from the viscous
drodynamic to the inertial hydrodynamic regime@16#.

Variety of techniques have been used to simulate gro
kinetics in the binary immiscible fluids. Direct simulations
model H have been used to study the domain growth a
scaling using various defined length scales@8,15#. Lattice
Boltzmann simulations have been particularly useful in e
ploring the late time hydrodynamic regime@17–19#. One
problem with this technique is that it does not include th
mal fluctuations. On the other hand thermal fluctuations
inherent in lattice-gas models. Rothman and Keller propo
a lattice-gas model~RK model! for the binary immiscible
fluids @20#. This model has been used for simulating 2D b
nary fluid phase separation at different overall fluid densit
@21,22#.

Though most of the techniques mentioned in the previ
paragraph have been extended to study a mixture of
fluids and a surfactant@22–24#, our understanding of phas
separation wherein all three are fluid components is ra
limited. Molecular dynamics simulations by Laradjiet al.
@25# seem to indicate that hydrodynamic flow is not likely
control the separation process in ternary fluid system. T
study indicates that the ternary system at late times reach
dynamical scaling regime during which the domains show
growth lawR(t)}t1/3, in agreement with the classical theo
of Lifshitz and Slyozov. Gunstensen and Rothman exten
©2003 The American Physical Society07-1
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K. C. LAKSHMI AND P. B. SUNIL KUMAR PHYSICAL REVIEW E 67, 011507 ~2003!
the lattice-gas model~GR Model! to study ternary immis-
cible fluids @26# but do not make any comments about t
dynamical exponents. In this model, the total energy funct
is the sum of the work done by the ‘‘color flux’’fW i of each
component against its ‘‘color field’’QW i and is given byW
5(s i fW i•QW i . More recently, a level set method was pr
posed for the study of phase separation in fluid mixtu
@27#. In this method one assumes convective terms to do
nate the coarsening; local volume fraction functionf i(x,t)
of the components is then coupled to the local velocity fi

vW through the kinetic equation

]f

]t
52vW •¹W f. ~1!

The fluid velocityvW satisfies Navier-Stokes equation

]vW

]t
1~vW •¹W !vW 5n¹W 2vW 2

¹W P

r
2

FW

r
, ~2!

where,P is the pressure,n is the kinematic viscosity, andr
is the density. The interfacial energy between the doma
enters the equations only through the external forceFW ;

FW 5 (
i 5A,B,C

s i8d~f i !k~f i !n̂, ~3!

wherek(f i) is the curvature of thef i domain interface,s is
the surface tension defined such that for theAB interface the
surface tension issA

i 1sB
i .

The zero contour of the functionf i specifies the interface
of the domains. Immiscible three-component mixtures w
majority componentsA andB having the same volume frac
tion and a minorityC phase was studied using this meth
@27#. They find a power law dependence of interface len
with dynamic exponents in the range 0.5–0.6.

In this paper, we discuss lattice-gas simulations of
binary and ternary mixtures phase separating in two dim
sions. We calculate cluster size distribution, total interfa
length, and the density density correlation functions for e
of the components. We see that, in some cases, the inte
length and the first zero of the correlation function; thou
shows power law dependence on time, do not have the s
dynamic exponents, thus, violating scaling.

In binary mixtures, large difference in the parameterss i
of the two components can lead to breakdown of sca
with the domains coarsening through rupture and coa
cence. In the symmetric ternary mixtures with equals i and
equal volume fractions, we see the average size of the or
ing domains,R(t)}t1/3 in agreement with the results re
ported earlier. At late times, we observe a crossover to at1/2

regime which is not reported in previous simulations. As
reduce the volume fraction of one of the components
exponent changes to 2/3, consistent with the inertial reg
in two-component mixtures. In the asymmetric case; wher
one of the component is miscible in the other two, we o
serve aR(t)}t1/2 and a crossover tot2/3 as the volume frac-
tion of the solute is reduced to zero.
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By choosing a substrate which has minimum interact
with the fluid one should be able to conduct experiments
fluid separation problem in two dimensions. Such quasi-tw
dimensional geometries have been used for studying th
fluid phase separation@4#.

The paper is organized as follows: In Sec. I, we introdu
the problem and summarize previous results. A detailed
count of the lattice-gas automaton model and the algorit
for computing the cluster size and interface length are gi
in Sec. II. Next, we discuss the results of our simulations
the binary fluids. Section IV deals with the symmetric a
asymmetric ternary fluids. In Sec. V, we conclude the pa
with a summary of the results.

II. THE MODEL

Lattice-gas automaton is an alternative numerical desc
tion of fluid flow dynamics. This model approximates reali
by constraining motions and collisions of fluid particles to
lattice, where each particle represents a finite mass of fl
Lattice-gas automaton models represent, in the continu
the incompressible Navier-Stokes equation correctly and
extensively used in simulations of fluids.

In this paper, we discuss simulations using the Fris
Hasslacher, and Pomeau~FHP! model for fluids. Much has
been written about the FHP model, which was first intr
duced in 1986 by Frisch, Hasslacher, and Pomeau@28#. The
fully discrete microscopic dynamics of the FHP model ma
into the macroscopic behavior of hydrodynamics. A modifi
version of the FHP model for immiscible fluid was intro
duced by Rothman and Keller@20#. In this model, which is
defined on a hexagonal lattice, particles at the lattice s
are allowed to take seven possible velocities,cW i , i
P$0,1,2,3,4,5,6%. Boolean variables indicate the occupatio
number at a particular site at a given time. The dynamic
such that no more than one particle enters the same site a
same time with the same velocity; the exclusion princip
The particles undergo collision that conserves, at every s
the total number of particles, their total momentum, and
total kinetic energy after each time step.

Multiphase flows in which different species of fluids c
exist, move and interact are an important domain of appli
tion of the lattice-gas approach. Models for miscible, imm
cible, and reactive flows have been proposed. Interac
between the species are the key ingredient of multiph
flows and depending on the nature of the physical proces
different interactions will be considered.

The lattice-gas approach has the important advantage
the interface between the different fluids appear, naturally
a consequence of the way the fluids are modeled in term
particles. In this paper, we represent the different phase
assigning the particles a ‘‘color.’’ Now the state of any vert
at rW is specified by a total density vectorfW (rW) and the color
vectorsqW i(rW) with Boolean variablesf j andqi j as the com-
ponents of this vector. In the case of ternary mixtures,i can
take three values11, 21, and 0. This is illustrated clearly
in Fig. 1. We define the average density as the ratio of to
number of particles to the maximum number of partic
7-2
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SCALE INVARIANCE IN COARSENING OF BINARY . . . PHYSICAL REVIEW E67, 011507 ~2003!
possible. This is given byd5( i 50,j 51
i 56,j 5Nf i(r j )/(7N), whereN

is the total number of sites in the lattice.
Drawing analogies from electrodynamics, we define

color flux and color field at every lattice point for each ty
of particles. In the case of ternary mixture the color flux a
lattice site is given by

QW 1~rW !5(
j 50

j 55

cW jq1 j , ~4!

QW 21~rW !5(
j 50

j 55

cW jq21 j , ~5!

QW 0~rW !5(
j 50

j 55

cW jq0 j . ~6!

And the local color gradients or fields are defined to be

fW1~rW !5(
j 50

j 55

cj
W (

k50

k56

q1k~rW1cW j !, ~7!

fW21~rW !5(
j 50

j 55

cW j (
k50

k56

q21k~rW1cW j !, ~8!

fW0~rW !5(
j 50

j 55

cW j (
k50

k56

q0k~rW1cW j !. ~9!

Following the GR model, we write the work done by th
flux against the field to be

W52@s1fW1~rW !•QW 1~rW !1s21fW21~rW !•QW 21~rW !

1s0fW0~rW !•QW 0~rW !#, ~10!

where s i are the parameters which determine the surf
tension between different phase boundaries. The three ph
are labeled byi 561,0.

The simulation proceeds in two steps, collision and tra
lation. During the collision process, particles at a given l
tice site can exchange their velocity and color. The collis
rules are such that the work performed by the flux against
field is minimized, subject to the constraints of the exclus

FIG. 1. Thestateof a lattice point is given by the vectorsfW

5$1,0,1,0,0,1,0%, qW 15$0,0,1,0,0,0,0%, qW 215$1,0,0,0,0,0,0%, and

qW 05$0,0,0,0,0,1,0%.
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principle as well as the principles of mass, momentum, a
particle conservation. There can be a number of configu
tions which satisfy the above constraints, and in princi
one should pickup that configuration which minimizes e
ergy from this full set of possible configurations. In practi
only a ‘‘limited’’ number of configurations are considered.
our simulations, we take into account the following possib
ties.

If a site has more than three particles or if their to
momentum is nonzero, then we pickup all possible pairs
an attempt is made to exchange their colors. The exchang
accepted only if it lowers the energy.

When two particles occupy the same site with oppos
velocities there are two cases to consider. In one, both
particles are of the same color. Then a rotation of the c
figuration by 0°, 60°, or 120° is attempted as shown in F
2. The other possibility is that the two are of different colo
Then, we need to check the possibilities for 0°,660°,
6120°, and 180° rotation.

When three particles collide at an angle of 120°, there
three possibilities. When all the particles have the sa
color, they could just reverse their directions or retain th
velocities. When the colors are not the same, similar to tw
particle collisions, the configuration could now be rotated
0, 660, 6120, and 180. In all the above cases, the low
energy configuration is chosen as the final state.

There is one special case of three-particle collision
which two particles have opposite velocities and the th
one is a zero velocity particle. In this case, apart from ro
ing the configuration an exchange of color between pair
also attempted.

Next step in the simulation is the translation in which
particles are moved in the direction of their velocities. Th
collision and translation process completes one time step

To understand the various competing terms in this mod
we first look at a two-component fluid mixture and introdu
the variablesqk5q1k2q21k , fk5q1k1q21k , in the direc-
tion k. The two components are now designated byqk
561. Substituting these variables in the equations
fW1 , fW21 andQW 1 ,QW 21, we can obtain from Eq.~10! the work
done to be

FIG. 2. Possible configurations in a two-particle collision.
7-3
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W52~s1fW1•Q11s21fW21•QW 21

52F(
k

cW kqk•S ~s11s21!(
i

cW i(
l

ql S rW1cW i

1~s12s21!(
i

cW i(
l

f l~rW1cW i ! D
1(

k
cW kfk•S ~s11s21!(

i
cW i(

l
f l~rW1cW i !

2~s12s21!(
i

cW i(
l

ql~rW1cW i ! D G . ~11!

Momentum conservation implies that the last two terms
the above equation do not contribute to the dynamics.
first term decides the energy of the interface between the
phases. The second term favors movement of particles
ward higher or lower densities depending on their color. F
example, whens12s21.0 this terms imply higher diffu-
sivity of particles withq521. Thus, increasingus12s21u
is like increasing the ‘‘temperature.’’

The earlier lattice-gas model for two-component fluids
Rothman and Keller useds15s215s. In this model the
work done is given by

W52s fW•QW , ~12!

where QW (rW)5( j 50
j 55cW jqj and fW(r )5( j 50

j 55cW j (k50
k56qk(rW1cW j ).

We can then introduce thermal fluctuation by defining
inverse temperature like parameterb such that the new con
figuration at every time step is accepted with a probabi
proportional to exp2b(Wold2Wnew) @22#. Unless specified
otherwise, the results discussed in this paper are obta
using the GR model.

Correlation functions and domain distribution functions

We define the pair correlation functions

Ci j
q ~rW,t !5K (

k
qi ,k~xW ,t !(

k
qj ,k~xW1rW,t !L

2K (
k

qi ,k~xW !L K (
k

qj ,k~xW !L , ~13!

Ci j
h ~rW,t !5^hi~xW ,t !hj~xW1rW,t !&2^hi~xW !&^hj~xW !&, ~14!

Here, the subscriptsi , j represent the color of the particle
with i , j 561,0. Field valueshi determines thephaseat ev-
ery lattice points. A lattice point belongs to thei th phase ifhi
has a value higher than the other two. This means that m
of the particles there belong to thei th color. We calculate the
lengthRi j (t) as the first zero of the correlation functionCi j

h .
For the immiscible case wherein all three phases have

same surface tension, to calculate the border length and
ter size of the domains of a particular phase, sayA, we use
the following algorithm.
01150
n
e
o
o-
r

n

y

ed

st

he
s-

All lattice sites are picked sequentially. If a particular s
belongs to the phaseA and is not assigned a cluster numb
we give it a new number. All the neighbors of this site a
then checked. If the neighbor belongs to the phaseA, three
possibilities arise. In one, the site does not have an assig
cluster number. We will then give this neighbor the sam
cluster number as the present site. In the second case
neighbor has a number which is the same as the site . H
we do not have to do anything more. In the third case,
neighbor has a number which is different from that of t
present site. That is, the neighbor belongs to a different c
ter. In that case, the clusters are merged by assigning sm
of the two numbers to all sites in the two clusters. A latti
site which belong to a particular phase is a border site if o
of its neighbors is of a different phase.

In the case, wherein one of the phases is equally misc
in the other two; for example, let us considerC miscible inA
and B, we have two phases, theA-C phase and theB-C
phase, see Fig. 3. To label the domains, we then follow
same procedure as before. Any site belongs to theA-C phase
if it is an A site or aC site whose neighbors are allA or C.
For example, regionc in Fig. 3 belongs to theA-C phase.
The border of theA-C domain could be aA or C site. If it is
anA site, it should have at least oneB neighbor~regiond in
Fig. 3! or a C neighbor with the next nearest neighbor asB
~regiona in Fig. 3!. If the border site belongs to theC phase
then it should either have a neighbor which is aB site~region
b in Fig. 3! or aC neighbor with the next nearest neighbor
B ~regiona in Fig. 3!.

In the simulations, to prepare the initial configuration
particle is placed at a randomly chosen site. The velocity
the particle is chosen randomly from the seven possible
rections such that the total momentum summed over all p
ticles is zero. The color of the particle is again assign

FIG. 3. ~Top! Rules for determining the border. Squares rep
sentC phase, open circles representB phase, and the hashed circle
representA phase. The dark squares and circles are the border
between theA-C phase and theB-C phase.~Bottom! Snapshot from
the simulation of ternary fluid with one component miscible in t
other two. The dark regions are the border between theA-C ~white!
andB-C ~gray! domains.
7-4
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SCALE INVARIANCE IN COARSENING OF BINARY . . . PHYSICAL REVIEW E67, 011507 ~2003!
randomly depending on the volume fraction of each com
nent. Once the initial configuration is prepared the ensu
dynamics conserved the total number of particles, the
momentum, the total kinetic energy, and the volume fract
of each components.

Simulations are performed on a triangular lattice w
360 000 lattice points with periodic boundary condition
The results are averaged over ten initial configurations.
dynamic exponents are obtained by a power law fit over
decade in time.

III. TWO-COMPONENT FLUIDS

In this section, we reexamine the well studied case
binary fluid coarsening following a critical quench. The fl
ids are labeled byi 561. Let us first look at the cases1
5s2151. The time dependence of average domain s
R(t) which scales the same way asRi j is shown in Fig. 4. At
early time, we see Lifshitz-Slyozov-Wagner~LSW! t1/3 @8#
growth. At late times the growth of domains is controlled
the inertial hydrodynamics and we have the well knownt2/3

growth law @8#.
To check for scaling, we compare the lengthR given by

the first zero of the correlation function with the total bord
lengthL(t). As can be seen from Fig. 4, at late time, in t
inertial hydrodynamic regime, the lengthL also exhibits
power law dependence with a dynamic exponent 2/3. T
agrees with earlier studies on binary fluid phase separa

FIG. 4. The first zero of the correlation functionR ~open circles!
and the total border lengthL ~filled squares! for a binary fluid, with
s15s2151, with log10 ~time!. The average density of the fluids
d50.55. The curves are shifted to make the comparison easy. C
tinuous lines with slope 2/3 and 1/3 are given as a guide to the

FIG. 5. Dynamic exponents ofaR andaL as a function ofs21

for s151. The open circles representaL and the dark square
representaR .
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which predict scaling to hold in the inertial regime@14,15#.
We now investigate the more general case ofs1Þs21

with s21,s1. The dynamic exponentsaR and aL charac-
terizing the time dependence ofR and L seem to vary dif-
ferently with s12s21. This is depicted in Fig. 5. This re
sults imply break down of scaling at lower values ofs21.
The absence of scaling is clearly manifested in the snaps
given in Fig. 6, the coarsening process is through the bre
ing and joining of domains. Since the lengthR(t) is decided
by the big clusters it has a dynamical exponent character
of coalescence. On the other hand, the total border len
L(t) has significant contribution from the small cluste
which coarsen through evaporation condensation.

Similar change in the dynamical exponents ofR was ob-
served as a function of the inverse temperature like par
eterb in the RK model@22#. For low b values the coarsen
ing mechanism is very similar to that operating in the case
s1Þs21 in the GR model. This is shown in Fig. 7. Theb
dependence ofaR andL shown in Fig. 8 confirms absence o
scaling. These exponents indicate the presence of more
one coarsening mechanism operating at the late time reg

In the case of two-fluid mixtures with unequal volum
fraction, we see the initial LSW regime crossing over to t
a51/2 regime controlled by the droplet coalescence mec
nism. The first zero of the correlation functionR and the total
border lengthL in this regime seems to indicate existence
simple scaling@18#.

IV. THREE-COMPONENT FLUIDS

In this section, we look at two separate cases of ph
separating three-component fluids. In one, we conside
symmetric ternary mixturewith all the components having
equal volume fraction and with the parameterss i in Eq. ~10!
set tos15s215s0. This amounts to having the same su

n-
e.

FIG. 6. Time evolution of binary mixture ford50.55, s1

51.0, s21520.4. The snapshots are taken at~a! t525 118 and
~b! t539 810.

FIG. 7. Time evolution of binary mixture in the RK model fo
d50.55, s51.0, b50.03. The snapshots are taken at~a! t
525 118 and~b! t539 810.
7-5
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K. C. LAKSHMI AND P. B. SUNIL KUMAR PHYSICAL REVIEW E 67, 011507 ~2003!
face tension for theA2B,B2C, andA2C interfaces. The
other case of interest is theasymmetric mixture, where we
choose the parameters to bes15s21 and s0,2(s1
1s21). This choice of parameters ensures that one of
components~solute! is equally soluble in the other two. W
will now discuss these two cases in detail.

1. Symmetric case

Starting from the mixed state, the symmetric ternary m
ture, when quenched below the transition temperat
evolves to form droplets of individual components. Sna
shots from the simulation, shown in Fig. 9, clearly establ
the existence of sharp interfaces between the compon
The first zero of correlation functionR and the interface
lengthL are plotted in Fig. 10 as a function of time.

Initial regime corresponds to the formation of droplets.
Fig. 10, we see a region withR(t);t1/2, where this droplets
coalesce to form bigger domains. If the late time growth
due to the coalescence by droplet diffusion, as it is belie
to be, then the following simple argument shows that
exponent should be 1/2.

If R is the typical radius of a droplet, we have the drop
number densityn;v/R2, wherev is the volume fraction of
the components in two dimensions. The time for a drople
diffuse a distance of order of its radius istR5R2/D, whereD
is the diffusion coefficient. The area swept out by the drop
time t ~for t.tR) is of the orderR2t/tR;Dt. If tc is the
coalescence time, the expected number of drops in an
Dtc is of the order unity, which meansnDtc51. Since in
two dimensions, the diffusion coefficient,D;kBT/h, does
not have any dependence on the droplet size,

tc;
R2

vD
;

hR2

vkBT
. ~15!

FIG. 8. Dynamic exponents ofaR andaL as a function ofb for
s51 in the RK model. The open circles representaL and the dark
squares representaR .

FIG. 9. Time evolution of three-fluid mixture ford50.5, s1

5s215s051. The snapshots are taken at~a! t510 000, ~b! t
539 810, and~c! t5100 000.
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This implies thatR grows with time asR;(vkBTt/h)1/2 @9#.
Another mechanism for droplet coalescence is interfa

diffusion. At nonzero temperatures the domains fluctu
from their circular shape. The area explored by the domai
time t goes asDbt, whereDb is the diffusion coefficient for
the interface. The coalescence timetc is then given by

tc;
R0

2

Db
, ~16!

here, the lengthR0 is such thatpR0
25 area of the droplet.

Since the interface diffusion coefficient is not a function
R0, we getL(t);t1/2. Thus, both the droplet diffusion an
interfacial diffusion could give the same dynamical exp
nent.

To explore the possibility of the second mechanism,
studied the stability of a drop to fluctuations from the circ
lar shape. As shown in the appendix, in two dimensio
surface fluctuations die out exponentially, both in the case
a drop and a strip@11# of one fluid in another. This implies
that in the a51/2 regime, the dominant mechanism f
coarsening is the droplet coalescence by diffusion.

Droplet coalescence is the only mechanism operating h
and is further confirmed by the existence of scaling. In F
11, we compare the time dependence of the total bor

FIG. 10. Variation ofc correlation length with log10 ~time! in the
immiscible three-component case for densities 0.45, 0.5, and 0
a50.5 line is given as a guide to the eye.

FIG. 11. The first zero of the correlation functionR ~open
circles! and the total border lengthL ~filled squares! for a symmet-
ric ternary fluid withs15s215s0 with log10 ~time!. Average den-
sity of the fluids isd50.55. Continuous lines with slopes 1/3 an
1/2 are given as a guide to the eye.
7-6
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lengthL of the domains of componentA with that of the first
zero of the correlation functionR(t). We observe the sam
time dependence for both the lengths indicating scaling
the late time regime.

2. Asymmetric case

In this section, we discuss a ternary mixture with one
the components equally soluble in the other two. For this,
chooses15s21 ands0,2(s11s21) such that the com-
ponentC( i 50) is the solute. The componentsA and B are
mutually immiscible. We chooseA and B to have the same
volume fraction. We now haveA-C andB-C mixtures phase
separating similar to the binary fluid under critical quenc

As shown in Fig. 12, the starting mixed phase separa
into percolating domains ofA-C and B-C phases. Though
the early time behavior is similar to the two-component flu
with s15s21, the late time growth is analogous to the sit
ation, wheres1Þs21 discussed in Sec. III. The snapsho
do not exhibit self-similarity, domains split up and combi
during coarsening. In this regime, the first zero of the cor
lation function exhibits a dynamic exponenta51/2. We
would like to point out that for the same density, the tw
component fluid withs15s21 exhibits a late time exponen
a52/3 and does not show any evidence ofa51/2 regime.
Thus, the third component acts to reduce the interfacial
sion between theA rich andB rich phases leading to fluctua
tion induced breakup and reorganization of the domains.
the volume fraction of the componentC is reduced, we ob-
serve a gradual change from thea51/2 to a52/3 regime.

In order to investigate the validity of the scaling hypot
esis in this regime, we compare the length scalesL(t) and
R(t). This is depicted in Fig. 13. It is evident from the figu
that these two length scales vary differently at late times

V. CONCLUSION

We have presented the dynamics of domain growth
binary and ternary immiscible fluids, using a tw

FIG. 12. Time evolution of three-fluid mixture ford50.55. ~a!
and ~b! are the snapshots from the asymmetric ternary mixt
phase separation att525 118 andt539 810 withs15s2151 and
s0521.5. Note the breaking and reorganization of the doma
with time. A-C region is shown in black andB-C region in white.
For comparison, we show snapshots~c! and ~d! from the phase
separation of a binary mixture having the same density at the s
time steps withs15s2151.
01150
n

f
e
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n

dimensional hydrodynamic lattice-gas model. Various d
namic regimes are investigated by altering parameters
volume fraction, the interaction strength of the individu
components, and a temperature like variable.

We examine the validity of scaling in two-compone
fluid coarsening by comparing the dynamic nature of the fi
zero of the correlation function and the total border leng
While scaling holds in the droplet coalescence and the in
tial hydrodynamic regimes, violation of scaling is observ
in the fluctuation dominated regime.

In symmetric ternary mixtures, we show the existence o
coalescence dominated regime with a single length scale
hibiting a dynamical exponenta51/2. In asymmetric ter-
nary mixtures we use the concentration of the solute a
control parameter. We demonstrate that at higher solute c
centrations, the coarsening is driven by fluctuations and s
ing is violated.

APPENDIX

Stability of the drop

In this Appendix, we look at the stability of a drop wit
radiusR against perturbations in its perimeter. We conside
drop of radiusR with the fluid in the regionr ,R character-
ized by densityr, and kinematic viscosityn5h/r sur-
rounded by another fluid with densityr8 and kinematic vis-
cosity n8. For an incompressible and vorticity free fluid, w
can define the velocity component using a streaming po
tial c asv r5(1/r )(]c/]f), vf52]c/]r .

Navier-Stokes equation then reduces to

~] t2n¹2!¹2c~r ,f,t !50. ~A1!

We look for solutions of the formc(r ,f,t)5c1(r ,f,t)
1c2(r ,f,t) such that

¹2c150, ~A2!

~] t2n¹2!¹2c2~r ,f,t !50. ~A3!

The general solutions of these equations in cylindrical
lar coordinates is

e

s

e

FIG. 13. The first zero of the correlation function~open circles!
and the total border length~filled squares! in three-component
asymmetric fluids with log10 ~time!. Continuous lines with slopes
0.33 and 0.5 are given as reference.
7-7
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c1~r ,f,t !5S amr m1
bm

r mD eimfevt, ~A4!

c2~r ,f,t !5@amI m~kr !1bmKm~kr !#eimfevt, ~A5!

where k5(v/n)1/2 and I m(kr) and Km(kr) are modified
Bessel functions.

The coefficientsam , bm , am , andbm are obtained from
the four equations; the continuity ofv r at r 5R, continuity of
vf at r 5R, continuity of tangential stresss rf at r 5R and
the relation between normal stresses
rra

01150
s rr ur 5R21p25s rr ur 5R11p11ps . ~A6!

For the pressurep, we write P5p(r )eimfevt. The pres-
sure due to surface tension is obtained from the You
Laplace formula

Ps5
s im3

R0
3v

c r ,R . ~A7!

These equations can be written in a matrix form
3
Rm 21/Rm I m 2Km

Rm21 1/Rm11
2I m /R1

k

m
I m21 2Km /R1

k

m
Km21

22~m21m!Rm22 2~m21m!

Rm12
A33 A34

A41 A42 A43 A44

4 F am

bm

am

bm

G50, ~A8!
of

ga-
h
eral
n-
where

A3352S k2

2
1

2m

R2
1

m2

R2 D I m1
mk

2R
I m11

1S mk

2R
1

k

RD I m212k2I m22 ,

A345S k2

2
1

2m

R2
1

m2

R2 D Km1
mk

2R
Km11

1S mk

2R
1

k

RDKm211k2Km22,

A415nS 2m21k2R2211
sm3

Rvh DRm22,

A425
n~2m21k2R221!

R(m12)
,

A435nF S 2m2

R2
2

4m

R2
1

1

R2
1

sm3

R3vh
D I m

2
k

mR
~122m!I m211

2k

R
~m21!I m21G ,

A445nF S 2
2m2

R2
1

4m

R2
2

1

R2D Km

2
k

mR
~122m!Km211

2k

R
~m21!Km11G . ~A9!

In the limit of large viscosity, we can neglect all terms
orderA(v/h). The condition for nontrivial solutions in this
limit leads to a relation betweenv andm;

v5
m3s

~124m2!Rh
. ~A10!

Since the right hand side of this equation is always ne
tive, we come to the conclusion that in the limit of hig
viscosity there are no unstable modes. In the more gen
case, the condition for nontrivial solutions leads to a tra
scendental equation forv and m. A numerical analysis on
this equation does not yield any unstable solutions.
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